Intersubunit interactions modulate pH-induced activation of membrane fusion by the Junin virus envelope glycoprotein GPC.

نویسندگان

  • Joanne York
  • Jack H Nunberg
چکیده

The mature arenavirus envelope glycoprotein GPC is a tripartite complex comprising a stable signal peptide (SSP) in addition to the receptor-binding (G1) and transmembrane fusion (G2) subunits. We have shown previously that SSP is a key element in GPC-mediated membrane fusion, and that GPC sensitivity to acidic pH is modulated in part through the lysine residue at position 33 in the ectodomain loop of SSP (J. York and J. H. Nunberg, J. Virol. 80:7775-7780, 2006). A glutamine substitution at this position stabilizes the native GPC complex and thereby prevents the induction of pH-dependent membrane fusion. In efforts to identify the intersubunit interactions of K33, we performed alanine-scanning mutagenesis at charged residues in the membrane-proximal ectodomain of G2 and determined the ability of these mutations to rescue the fusion deficiency in K33Q GPC. Four second-site mutations that specifically complement K33Q were identified (D400A, E410A, R414A, and K417A). Moreover, complementation was also observed at three hydrophobic positions in the membrane-spanning domain of G2 (F427, W428, and F438). Interestingly, all of the complementing mutations restored wild-type pH sensitivity to the K33Q mutant, while none themselves affected the pH of membrane fusion. Our studies demonstrate a specific interaction between SSP and G2 that is involved in priming the native GPC complex for pH-induced membrane fusion. Importantly, this pH-dependent interaction has been shown to be vulnerable to small-molecule compounds that stabilize the native complex and prevent the activation of membrane fusion. A detailed mechanistic understanding of the control of GPC-mediated membrane fusion will be important in guiding the development of effective therapeutics against arenaviral hemorrhagic fever.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An antibody directed against the fusion peptide of Junin virus envelope glycoprotein GPC inhibits pH-induced membrane fusion.

The arenavirus envelope glycoprotein (GPC) initiates infection in the host cell through pH-induced fusion of the viral and endosomal membranes. As in other class I viral fusion proteins, this process proceeds through a structural reorganization in GPC in which the ectodomain of the transmembrane fusion subunit (G2) engages the host cell membrane and subsequently refolds to form a highly stable ...

متن کامل

The Curious Case of Arenavirus Entry, and Its Inhibition

Arenaviruses comprise a diverse family of enveloped negative-strand RNA viruses that are endemic to specific rodent hosts worldwide. Several arenaviruses cause severe hemorrhagic fevers in humans, including Junín and Machupo viruses in South America and Lassa fever virus in western Africa. Arenavirus entry into the host cell is mediated by the envelope glycoprotein complex, GPC. The virion is e...

متن کامل

pH-induced activation of arenavirus membrane fusion is antagonized by small-molecule inhibitors.

The arenavirus envelope glycoprotein (GPC) mediates viral entry through pH-induced membrane fusion in the endosome. This crucial process in the viral life cycle can be specifically inhibited in the New World arenaviruses by the small-molecule compound ST-294. Here, we show that ST-294 interferes with GPC-mediated membrane fusion by targeting the interaction of the G2 fusion subunit with the sta...

متن کامل

Biochemical Reconstitution of Hemorrhagic-Fever Arenavirus Envelope Glycoprotein-Mediated Membrane Fusion

The membrane-anchored proteins of enveloped viruses form labile spikes on the virion surface, primed to undergo large-scale conformational changes culminating in virus-cell membrane fusion and viral entry. The prefusion form of these envelope glycoproteins thus represents an important molecular target for antiviral intervention. A critical roadblock to this endeavor has been our inability to pr...

متن کامل

Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion.

The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 83 9  شماره 

صفحات  -

تاریخ انتشار 2009